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Oxygenated phenols are mono-formylated using a mixture of paraformaldehyde, MgCl2, and Et3N in THF.
In all cases but one, only one regioisomer of the salicylaldehyde is obtained in good to high yield.

� 2009 Elsevier Ltd. All rights reserved.
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Formylation of aromatic compounds is an important reaction in
synthetic organic chemistry, and numerous methods are avail-
able.1 By directed ortho-metallation of an activated phenol, a for-
myl group can be introduced selectively,2 but this methodology
requires the introduction and removal of the activating group for
the synthesis of salicylaldehydes. On the other hand, salicylaldehy-
des are accessible from the corresponding phenols by several clas-
sical formylation reactions. However, the yields are often only
moderate and the lack of regioselectivity is problematic.3 More-
over, the reaction conditions are quite harsh employing environ-
mentally disagreeable reagents. The regioselectivity is even more
of a problem for 1,3-dihydroxylated phenols (resorcinols). The re-
cently reported regioselective ortho-formylation of substituted
phenols using the MgCl2–Et3N base system and paraformaldehyde
affords salicylaldehydes in excellent yields.4 The salicylaldehydes
obtained by this method have been employed by us and others
for the preparation of useful products and intermediates.5 We
wanted to extend this methodology to substituted mono-protected
resorcinols, a structural feature found in many natural products
and biologically active substances.6

Reacting paraformaldehyde and 3-methoxyphenol in the pres-
ence of the MgCl2–Et3N base system yielded 4-methoxysalicylalde-
hyde (1) and 6-methoxysalicylaldehyde in 92% and 5% yield,
respectively (Scheme 1).7,8 Replacing the methoxy group with the
larger benzyloxy group, afforded exclusively 4-benzyloxysalicylal-
dehyde (2) in 88% yield. The same encouraging results were ob-
tained with either tert-butyldimethylsilyl or thexyldimethylsilyl
ll rights reserved.
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protecting groups; salicylaldehydes 3 and 4 were obtained in 80%
and 88% yields, respectively. Further substitution with either chlo-
rine or bromine atoms at the 4-position afforded the mono-formy-
lated salicylaldehydes 5–11 in good to high yields (Table 1).
Formylation of 3-(tert-butyldimethylsilyloxy)-4-chlorophenol and
3-(tert-butyldimethylsilyloxy)-4-bromophenol was accompanied
by minor unidentified byproducts. The structural assignments of
the salicylaldehydes were based on spectral data and by compari-
son with authentic samples.7,8

Resorcinols mono-protected as acetate, pivalate, or tert-butoxy-
carbonyl derivatives were subjected to the same reaction condi-
tions, but only low yields of the corresponding salicylaldehydes
were obtained in all three cases. Furthermore, subjecting 2,3-dime-
thoxyphenol to the formylating reagents gave the corresponding
salicylaldehyde 12 in only 11% yield. On the other hand, 2,3-(meth-
ylenedioxy)-phenol, a structural entity found in several highly oxy-
genated natural products9 was cleanly converted into the desired
salicylaldehyde 13 in almost quantitative yield using our formyla-
tion protocol. When 3,4-(methylenedioxy)-phenol was reacted
R = H, Me, Bn, TBS, TDS
R' = H, Cl, Br

Scheme 1.



Table 1
ortho-Formylation of oxygenated phenols
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a 5% of 6-methoxysalicylaldehyde was also obtained.
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under the same conditions, 2-hydroxy-4,5-(methylenedioxy)-
benzaldehyde 14 was formed in 45% yield. Furthermore, salicylal-
dehyde 15 was obtained in 82% yield as the sole product when
2,3-(isopropylidenedioxy)-phenol was subjected to the ortho-
formylation conditions. Again, complete regioselectivity was
observed in all three cases.7,8

In conclusion, we have extended our simple and regioselective
ortho-formylation protocol to mono-protected resorcinols and
methylenedioxy- substituted phenols. The formylations occurred
with high to excellent yields.
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